
SSL/TLS CERTIFICATE TRACKING IN REAVEALING FORGED CERTIFICATES

Page 1 of 72

JARAMOGI OGINGA ODINGA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

SCHOOL OF INFORMATICS AND INNOVATIVE SYSTEMS

PROJECT TITLE:

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

PRESENTED BY:

NGARI EUSTUS MUTUGI

ADMISSION No: I 132/0877/2013

AN APPLICATION PROJECT REPORT SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF BACHELOR OF

SCIENCE IN COMPUTER SECURITY AND FORENSICS

©2016

SUPERVISORS

MR. ABUONJI PAUL

SSL/TLS CERTIFICATE TRACKING IN REAVEALING FORGED CERTIFICATES

Page i of 72

DECLARATION BY THE STUDENT

This project proposal is my original work and has not been presented for any award of any degree

in any other college or university.

NGARI EUSTUS MUTUGI

ADM No: I 132/0877/2013

Sign…………………………. Date…………………

DECLARATION BY SUPERVISORS

This project proposal has been submitted for examination with our approval as the

candidate’s/University supervisors.

MR. PAUL ABUONJI

Sign…………………………… Date………………….

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page ii of 72

Dedication.

I dedicate SSL/TLS Certificate Tracking in Revealing Forged Certificates to Dad, Mum and the

Browsing Secure Community who have always wanted a safer world.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page iii of 72

Abstract.

SSL/TLS (Secure Sockets Layer/Transport Layer Security) Certificate Tracking in Revealing

Forged Certificates is based on implementing two chrome based security solutions meant set to

uncover and evade the threats that results from unencrypted connections or by use of a forged

SSL/TLS certificates. To ensure that the client browser connects via encrypted HTTPS (Secure

HyperText Transfer Protocol) connections we have come up with a way to ensure that all user

requests shall be redirected to HTTPS. Also, through monitoring of SSL/TLS certificate we will

be able to verify the integrity of the certificate. Moreover, there are trackers to website that handles

user data or have the ability to gather client related data. These trackers if they set to connect over

HTTP unencrypted connection they may compromise the security of the of the client regardless

the ability of the client to connect over secure HTTPS connections. Therefore, there was a need to

connect the trackers mandatory over HTTP + SSL (HTTPS) encrypted connection.

The development of the security solution was made possible by the utilization of agile

methodology and in our case Scrum Methodology proved to be useful. The software development

took 35 days despite the change requests made. This was made possible by the adoption of Scrum

in the software development process.

Strict SSL and Cert Monitor chrome browser extensions and application respectively, provides the

user with added security features in your browsing experience and greatly improves your privacy

online. This is also made as transparent and automatic as possible. Development was majorly done

on the chrome browser as it the leading in usage statistics to date (Dec 2016). The chrome app and

extensions should be deployed to any web user to help fight against man-in-the-middle attacks that

are faced daily by every internet user and many a times without his/her consent. The information

provided by my chrome extensions can allow the user to easily validate the security of his/her

browsing experience. My chrome app and extension have the advantage of being lightweight,

informative, and simple to install.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page iv of 72

Acknowledgement

I would like to extend my heartiest thanks with a deep sense of gratitude and respect to all those

who provides me immense help and guidance during my training period.

I would like to thank my Project Leader Mr. Paul Abuonji for providing a vision about the system.

I have greatly benefited from his regular critical reviews and inspiration throughout my work.

I would also like to thank my friends, who have already formed a browsing secure community for

their unfailing cooperation and sparing their valuable time to assist me in my user testing and

discussion on online privacy.

I would like to express my sincere thanks to our Director of ICT department, Prof. Anthony

Rodrigues, the Dean of the School of Informatics and Innovative Systems, Dr. Abeka and my

internal guide Mr. Paul Abuonji, who gave me an opportunity to undertake such a great challenging

and innovative work. I am grateful to them for their guidance, encouragement, understanding and

insightful support in the development process.

I would also like to thank Dr. Ogara for providing us with a super informative guide on how to

carry out the system development process and a template documentation on how to get the job

done.

I am also thankful to entire staff of School of Informatics for their constant encouragement,

suggestions and moral support throughout the duration of my project.

I would also like to express my gratitude to Dr. Bernard Ngari, who provided financial support in

every aspect of the project conceptualization to project articulation.

Last but not the least I would like to mention here that I am greatly indebted to each and everybody

who has been associated with my project at any stage but whose name does not find a place in this

acknowledgement.

With sincere regards,

NGARI EUSTUS MUTUGI

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page v of 72

TABLE OF CONTENTS

Dedication. .. ii

Abstract. ... iii

Acknowledgement ... iv

List of Figures ... x

List of Tables ... xi

CHAPTER 1 ... 1

1.0 Introduction .. 1

1.1 Background Information. ... 3

1.1.1 The SSL Protocol .. 3

1.1.2 The SSL Man-in-the-Middle Attack ... 5

1.2 Problem Statement ... 6

1.3 Objectives of the Study .. 7

1.3.1 Main Objective.. 7

1.3.2 Specific Objectives ... 7

1.4 Research Questions. ... 7

1.5 Scope of the Project.. 7

1.6 Justification .. 7

1.7 Assumptions. .. 8

1.8 Tools and Technologies used. .. 8

CHAPTER 2 ... 9

2.1 Literature Review... 9

2.1.1 Web Tripwires .. 9

2.1.2 Content Security Policy. ... 9

2.1.4 HTTP Strict Transport Security (HSTS) .. 11

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page vi of 72

2.1.5 Certificate validation by Notaries. .. 11

2.1.5 Certificate Transparency. .. 12

CHAPTER 3 ... 13

3.1 Scrum Methodology... 13

3.1.1 Overview. ... 13

3.2 Scrum Artifacts. .. 14

3.2.1 The Product Backlog.. 15

3.2.2 The Project Burn down Chart. ... 16

3.2.3 The Sprint Backlog. ... 17

3.2.4 The Sprint Burn Down Chart ... 18

3.2.5 Impediment list. ... 19

3.3 Sprint ... 19

3.4 The Sprint Planning Meeting. ... 19

3.5 The Daily Activities. ... 19

3.6 Sprint Review Meeting ... 19

3.7 Sprint Retrospect Meeting .. 20

3.8 Project Startup ... 20

3.9 Project Completion ... 20

CHAPTER 4 ... 21

Software Analysis and Requirement ... 21

4.1 Study of the current system.. 21

4.1.1 The Trouble with HTTP Strict Transport Security (HSTS) 21

4.1.2 The Trouble with Certificate Transparency. ... 22

4.1.3 Requirements of the new system. ... 22

4.1.4 Functional System Requirements ... 23

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page vii of 72

4.1.5 Non-Functional Requirements .. 24

4.1.6 Feasibility Study. .. 24

4.1.7 Functions of the system .. 25

4.1.7.1 Strict SSL use case diagram. ... 25

4.1.7.2 Cert Monitor use case diagram ... 26

4.1.7.3 Cert Monitor Sequence Diagram .. 26

4.1.8 Hardware and Operating system considerations. ... 27

4.1.9 Programming languages, libraries and chrome APIs used ... 28

Software Design .. 30

4.2 Introduction .. 30

4.2.1 Designs considerations during problem solving. .. 30

4.2.2 Rationale for choosing the design models. ... 30

4.2.3 Chrome Browser App Architecture. ... 31

Requirement 1. App Container Model. ... 31

Requirement 2. Programming model... 32

Requirement 3. App lifecycle .. 32

Requirement 4 Security model. ... 34

4.2.4 Strict SSL Design. .. 34

4.2.5 Certificate Monitor Design. .. 36

Software Implementation. ... 37

4.3 Software Implementation Environment. .. 37

4.3.1 4-Tier Implementation architecture .. 37

Layer 1. The presentation tier or user services layer ... 38

Layer 2. The control tier or control layer. ... 38

Layer 3. The business services layer. .. 38

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page viii of 72

Layer 4. The data tier or data services layer. ... 38

Software Development Testing... 39

4.4 Testing Plan. .. 39

4.4.1 The Testing Process .. 40

4.4.2 Requirement Traceability ... 40

4.4.3 Testing Schedule... 41

4.4.4 Test Strategy ... 41

4.4.5 Unit Testing .. 41

4.4.6 Integration Testing .. 43

4.4.7 System Testing ... 43

4.4.8 Performance Testing ... 44

4.4.9 Test Cases ... 44

4.4.5.1 Test case for Certificate Monitor .. 46

4.4.5.2 Test case for Certificate Monitor App Debugging ... 47

4.4.5.3 Test Case for Strict SSL Extension ... 47

CHAPTER 5 ... 48

Discussion and Conclusion ... 48

5.1 Problems that Strict SSL and Cert Monitor set to solve. ... 48

5.2 How the Strict SLL set to ensure HTTP + SSL connections. .. 48

5.3 How the Certificate Monitor set to ensure the integrity of the of the certificate. 48

5.4 Problem Encountered in the system conceptualization towards system actualization. 49

5.4.1 General problems encountered. .. 49

5.2.3 Challenges faced during the development of the chrome browser application. 51

5.2.4 Challenges faced during Certificate Monitor app extension .. 52

5.2.5 How my application and extension have meet the objectives. .. 52

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page ix of 72

5.3.1 Recommendations .. 53

5.3.2 Future Implementation. .. 53

5.3.3 Conclusion ... 53

References ... 54

APPENDIX. .. 58

6.1 UML Code Syntax for StrictSSL Use Case diagram. ... 58

6.2 UML code Syntax for Certificate Monitor use case diagram. .. 58

6.3 UML code Syntax for Top-Down Testing Methodology Diagram. 59

6.4 UML code syntax for Certificate Monitor Sequence Diagram. 59

6.5 UML code syntax for StrictSSL Activity Diagram. ... 60

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page x of 72

List of Figures

Figure 1. 1 Man-In-The-Middle attack using SSL stripping .. 2

Figure 1. 2 Man-in-The-Middle Attack using SSL sniffing ... 2

Figure 1. 3 A basic SSL handshake with no certificates... 3

Figure 1. 4 An SSL man-in-the-middle attack between the browser and the server, using a forged

SSL certificate to impersonate as the server to the client. .. 5

Figure 3. 1 Overview of Scrum Methodology .. 14

Figure 3. 2 product backlog from story readiness report .. 15

Figure 3. 3 Product backlog burndown chart .. 16

Figure 3. 4 project burndown chart with forecast ... 17

Figure 3. 5 Sprint backlog From the Story readiness report ... 18

Figure 3. 6 Sprint backlog burn down chart ... 18

Figure 4. 1 Strict SSL use case Diagram .. 25

Figure 4. 2 Certificate Monitor Use Case Diagram .. 26

Figure 4. 3 Certificate Monitor Sequence Diagram .. 26

Figure 4. 4 App container Model .. 32

Figure 4. 5 App life cycle ... 33

Figure 4. 6 Strict SSL Design ... 35

Figure 4. 7 Certificate Monitor Design ... 36

Figure 4. 8 4-Tier Implementation Architecture ... 37

Figure 4. 9 Top-down Test Methodology ... 39

file:///C:/Users/AIT/Desktop/Final%20Project%20Documentation.docx%23_Toc469500739
file:///C:/Users/AIT/Desktop/Final%20Project%20Documentation.docx%23_Toc469500741
file:///C:/Users/AIT/Desktop/Final%20Project%20Documentation.docx%23_Toc469500742
file:///C:/Users/AIT/Desktop/Final%20Project%20Documentation.docx%23_Toc469500742
file:///C:/Users/AIT/Desktop/Final%20Project%20Documentation.docx%23_Toc469500754

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page xi of 72

List of Tables

Table 4. 1 Programming Languages Used .. 28

Table 4. 2 Chrome APIs Used .. 29

Table 4. 3 Libraries Used .. 29

Table 4. 4 App Lifecycle Table .. 33

Table 4. 5 Top-down Testing Methodology Description.. 40

Table 4. 6 Features to be Tested ... 42

Table 4. 7 Unit Testing for Strict SSL .. 43

Table 4. 8 Test Case for Certificate Monitor .. 46

Table 4. 9 Test case for chrome app debugging ... 47

Table 4. 10 test case for Strict SSL ... 47

Table 5. 1 General Problems Faced .. 49

Table 5. 2 Challenges faced during the development of Strict SSL chrome browser extension .. 50

Table 5. 3 Challenges faced during the development of the chrome browser application 51

Table 5. 4 Challenges faced during Certificate Monitor ... 52

SSL/TLS CERTIFICATE TRACKING IN REAVEALING FORGED CERTIFICATES

Page 1 of 72

CHAPTER 1

INTRODUCTION

1.0 Introduction

Online transactions and communications are reliant on the connection between client and server

being secure. This has led to HTTPS becoming popular with online security, due to its simple

layering of HTTP on top the older SSL (Secure Sockets Layer) or the more recent TLS (Transport

Layer Security) protocols. The HTTPS (Secure Hyper Text Transfer Protocol) protocol is stated

to provide cryptographic capabilities to web servers and corresponding web sites (Oppliger, 2009),

with the latest version of TLS standards also stating that it is designed to prevent eavesdropping,

tampering, and message forgery (Rescoria, 2008). However, the HTTPS protocol, and

consequently the SSL/TLS protocols, have historically been compromised by many different types

of Man-in-the middle attacks (MITM) such as SSL Stripping (Moxie, 2009) and use of forged

certificates in SSL sniffing (Moxie, 2009).

SSL stripping refers to removing away the SSL/TLS data from a request message. It exploits the

vulnerability of multiple open ports for same application server. MITM attacker redirects all

requests to the application server through unsecure ports. Therefore, the data exchanged are

unencrypted and hence unsecure. SSL stripping is also achieved by a penetration testing tool

(Moxie, 2009), (Moxie, 2016) called the SSL strip. This tool removes the SSL/TLS based request

messages from a client request and sends it to the server. The server assumes that the client does

not support SSL/TLS and hence the established an insecure connection. This is really tragic

because the client communicates to the server on plain text.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 2 of 72

SSL Sniffing tries to intercept the communication channel by impersonating the server from the

client’s perspective and impersonating the client from the server’s perspective. Numerous

automated tools that can mount SSL man- in-the-middle attacks are publicly available on the

Internet e.g. sslsniff (Moxie, 2011) and sslstrip (Moxie, 2011), which greatly reduce the level of

technical sophistication necessary to mount such attacks.

Figure 1. 2 Man-in-The-Middle Attack using SSL sniffing

This is very concerning as the widespread adoption of HTTPS as best practice for securing

websites, and having users becoming accustomed to the use of HTTPS, may lead to a false sense

Figure 1. 1 Man-In-The-Middle attack using SSL stripping

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 3 of 72

of security. In most cases, the client and server may never be aware that their security has been

compromised, and that an attacker has complete control over the information crossing the network.

Therefore, it is important to understand the manner in which these attacks are implemented and

what can be done to mitigate them.

1.1 Background Information.

In this section, I provide an overview of the SSL protocol, and how the SSL man-in-the-middle

attack works to circumvent encrypted connections over the Secure Hyper Text Transfer Protocol

(HTTPS).

1.1.1 The SSL Protocol

The Secure Socket Layer (SSL) protocol was designed to ensure secure communications between

two entities over untrusted networks. The SSL protocol provides authentication based on the X.509

public key infrastructure, protects data confidentiality using symmetric encryption, and ensures

data integrity with cryptographic message digests.

To establish an SSL connection, the client and the server performs a handshake to authenticate

each other as seen in the below diagram.

1. The client sends a ClientHello message to the server, which specifies a list of supported

cipher suites and a client-generated random number.

Figure 1. 3 A basic SSL handshake with no certificates

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 4 of 72

2. The server responds with the ServerHello message which contains the server-chosen cipher

suite and a server-generated random number. In addition, the Certificate message contains

the server’s public key and hostname, digitally signed by a certificate authority, in which

the client is responsible of verifying.

3. The client then encrypts the pre-master secret using the server’s public key and sends the

pre-master secret to the server over a ClientKeyExchange message. Both the client and

server can hence derive the same session key from the pre-master secret and random

numbers.

4. Finally, the client and server exchanges ChangeCipherSpec messages to notify each other

that subsequent application data within the current session will be encrypted using the

derived session key.

In practice, commercial SSL certificates are often signed by intermediate CAs (a delegated

certificate signer), instead of directly signed by a trusted root CA (which are kept offline to reduce

the risk of being compromised). Therefore, the server’s Certificate message normally includes a

chain of certificates, consisting of one leaf certificate (to identify the server itself), and one or more

intermediate certificates (to identify the intermediate Certification Authorities). Each certificate is

cryptographically signed by the entity of the next certificate in the chain, and so on. A valid

certificate chain must chain up to a root Certificate Authority that is trusted by the client. Note that

SSL certificates are by design transferred in plaintext since the integrity can be verified by

signatures. It is critical that clients must validate every certificate in the chain. In the following

section, we will explain why validating SSL server certificates is necessary.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 5 of 72

1.1.2 The SSL Man-in-the-Middle Attack

The SSL man-in-the-middle (MITM) attack is a form of active network interception where the

attacker inserts itself into the communication channel between the victim client and the server

(typically for the purpose of eavesdropping or manipulating private communications). The attacker

establishes two separate SSL connections with the client and the server, and relays messages

between them, in a way such that both the client and the server are unaware of the middleman.

This setup enables the attacker to record all messages on the wire, and even selectively modify the

transmitted data the figure above depicts an SSL man-in-the-middle attack with a forged certificate

mounted between a browser and a HTTPS server. I describe the basic steps of a generic SSL man-

in-the-middle attack as follows:

a. The attacker first inserts itself into the transport path between the client and the server, for

example, by setting up a malicious Wi-Fi hotspot. Even on otherwise trusted networks, a

local network attacker may often successfully re-route all of the client’s traffic to itself

using exploits like ARP poisoning, DNS spoofing, BGP hijacking, etc. The attacker could

also possibly configure itself as the client’s proxy server by exploiting auto configuration

protocols (PAC/WPAD) (Chen, 2009). At this point, the attacker has gained control over

the client’s traffic, and acts as a relay server between the client and the server.

Figure 1. 4 An SSL man-in-the-middle attack between the browser and the server, using a forged SSL certificate to impersonate
as the server to the client.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 6 of 72

b. When the attacker detects an SSL ClientHello message being sent from the client, the

attacker accurately determines that the client is initiating an SSL connection. The attacker

begins the impersonation of the victim server and establishes an SSL connection with the

client. Note that the attacker uses a forged SSL certificate during its SSL handshake with

the client.

c. In parallel to the previous step, the attacker creates a separate SSL connection to the

legitimate server, impersonating the client. Once both SSL connections are established, the

attacker relays all encrypted messages between them (decrypting messages from the client,

and then re-encrypting them before sending to the server). Now, the attacker can read and

even modify the encrypted messages between the client and the server.

As soon as the client accepts the forged SSL certificate, the client’s secrets will be encrypted with

the attacker’s public key, which can be decrypted by the attacker. In fact, professional attackers

have proven capable of compromising CAs themselves in order to obtain valid certificates, as has

occurred during the security breaches of DigiNotar (Vasco, 2011) and Comodo (Comodo, 2011).

Moreover, even if the attacker does not have a trusted certificate of the victim server and uses a

self-signed certificate, researchers have shown that many users ignore SSL certificate warnings

presented by the browser (Sunshine, 2009). Even worse, studies have discovered that some non-

browser software and native mobile applications actually contain faulty SSL certificate validation

code, which silently accepts invalid certificates (Georgiev, 2012), (Muders, 2012), (Fahl, et al.,

2013).

1.2 Problem Statement

Enhancing HTTPS security can be made possible by enabling consistent secure encrypted

connection with the ability to evade man-the-middle (MITM) attacks such as the most devastating

SSL stripping that opts the unencrypted connections or the more sophisticated certificate SSL

Sniffing. With this in mind, I have developed an in-browser chrome browser application and

extensions that will mitigate these adversaries. These adversaries leverage themselves on the

network. With the ability to evade and terminate connections to this MITM attacks will help

mitigate loss of confidentiality, Integrity and Availability of the Client-Server browser

communications.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 7 of 72

1.3 Objectives of the Study

1.3.1 Main Objective.

The main objective of this project is to enhance HTTPS security by enforcing HTTP connections

to the rather appreciated HTTPS connections and revealing the integrity of the SSL/TLS certificate

used on the HTTPS connections. All trackers to a website shall be mandatory for them to connect

over HTTPS

1.3.2 Specific Objectives

i. To enforce HTTPS connections on depreciated HTTP connection

ii. To reveal the status of the SSL certificate on all trackers and the requested urls.

iii. To inform the user on a change in SSL certificate and inform the user.

iv. To mandatory enforce HTTPS connections on all trackers to a site.

1.4 Research Questions.

i. What are the role of HSTS (Strict Transport Security) on enforcing HTTPS connections?

ii. What are the techniques used to detect whether the client’s network connections have been

tampered with?

iii. What are the techniques used to validate certificate used on HTTPS connections?

iv. What are the suggested ideas in certificate transparency?

1.5 Scope of the Project.

The scope of the project shall gear toward enforcing HTTPS connections and depreciating any

HTTP or unencrypted connection. This shall also include all trackers to a site which shall be

enforced to connect over HTTPS encrypted connection and reveal the status of the SSL/TLS

certificate used in ensuring encrypted connections. The security solution shall also be informative

to the user and simple to use. User interaction with the chrome app and extensions shall be limited

to the whitelisting of only requested urls. This is because some sites do not support HTTPS

connections.

1.6 Justification

SSL stripping is a much more serious attack that remains dangerous today. It is a

maninthemiddle attack that converts your HTTPS connections into HTTP connections. This

attack is Devastating and difficult for users to detect. However, this can be enabled at the server

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 8 of 72

by enabling strict transport security. HSTS is supported on all modern browsers. However, HSTS

requires the site to opt into protection (which is a major disadvantage). This disadvantage has led

to slow implementation of Strict Transport Security accounting for 95% of HTTP servers

vulnerable to SSL Stripping attacks (Mutton, 2016).

Secondly, since SSL client certificates are rarely sent by normal users, it is not possible to

distinguish a legitimate client from an attacker directly via the SSL handshake from the server’s

perspective. In order to determine whether an SSL connection is being intercepted, our

fundamental approach is to observe the server’s certificate from the client’s perspective.

Intuitively, if the client actually received a server certificate that does not exactly match the

website’s legitimate certificate, we would have direct evidence that the client’s connection must

have been tampered with.

I have decided to develop on google chrome as is the leading browser in usage and by this I will

be able to reach a large number of internet users.

1.7 Assumptions.

i. Users are aware of basic security concepts such as Secure Hyper Text Transfer

Protocol.

ii. Users want to avoid MITM without any noticeable penalty on browsing experience

iii. Attackers are sophisticated are always looking ways to compromise secure

communications.

iv. The applications (browser, application, and extensions) are secure. This shall be

done by packaging the chrome browser application and extensions with a private

key.

1.8 Tools and Technologies used.

i. Google chrome Developer Tools Application

ii. Sublime text editor

iii. JavaScript Programming Language

iv. Google Chrome APIs (Application Programming Interfaces)

v. JSON (JavaScript Object Notation) is a lightweight data-interchange format.

vi. JavaScript Libraries such as moment.js, restruct.js, underscore.js etc.

vii. HTML (Hyper Text Markup Language)

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 9 of 72

CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review

Several techniques have been proposed to assist websites in detecting whether the client’s network

connections have been tampered with. In this paper, we focus on detection methods that do not

require user interaction, and do not require the installation of additional software or browser

extensions. Notably, Web Tripwires (Reis, 2008) uses client-side JavaScript code to detect in-

flight modifications to a web page. Several other studies (Freedman, 2007), (Jackson, 2007),

(Huang, 2011), (Kreibich, 2010) have utilized Java applets to probe the client’s network

configurations and detect proxies that are altering the client’s traffic.

2.1.1 Web Tripwires

Web Tripwires (Reis, 2008) was a technique proposed to ensure data integrity of web pages, as an

alternative to HTTPS. Websites can deploy JavaScript to the client’s browser that detects

modifications on web pages during transmission. In their study of real world clients, over 1% of

50,000 unique IP addresses observed altered web pages. Roughly 70% of the page modifications

were caused by user-installed software that injected unwanted JavaScript into web pages. They

found that some ISPs (Internet Service Providers) and enterprise firewalls were also injecting ads

into web pages, or benignly adding compression to the traffic. Interestingly, they spotted three

instances of client-side malware that modified their web pages. Web Tripwires was mainly

designed to detect modifications to unencrypted web traffic. By design, Web Tripwires does not

detect passive eavesdropping (that does not modify any page content), nor does it detect SSL man-

in-the-middle attacks. In comparison, our goal is to be able to detect eavesdropping on encrypted

SSL connections.

2.1.2 Content Security Policy.

Content Security Policy (CSP) (Stamm, 2010) enables websites to restrict browsers to load page

content, like scripts and stylesheets, only from a server-specified list of trusted sources. In addition,

websites can instruct browsers to report CSP violations back to the server with the report-uri

directive. Interestingly, CSP may detect untrusted scripts that are injected into the protected page,

and report them to websites. Like Web Tripwires, CSP does not detect eavesdropping on SSL

connections.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 10 of 72

2.1.3 Browser Plugins.

Another technique for websites to diagnose the client’s network is by using browser plugins, such

as Java and Flash Player. Browser plugins may provide more network capabilities than JavaScript,

including the ability to open raw network sockets and even perform DNS requests. For instance,

the Illuminati (Jackson, 2007) project used Java applets to identify whether clients were connecting

through proxies or NAT (Network Address Translation) devices. Jackson et al. conducted studies

using both Java and Flash Player on real-world clients to find web proxy vulnerabilities, including

multi-pin DNS rebinding (Jackson, 2007) and cache poisoning (Huang, 2011). The ICSI Netalyzer

(Kreibich, 2010) used a signed Java applet to perform extensive tests on the client’s network

connectivity, such as detecting DNS manipulations. However, browser plugins have turned out to

be one of the biggest security problems today (Hoffman, 2012).

The Flashback Trojan (Smith, 2012) infected over 600,000 Macs. It called the Java plugin from a

web page and loaded a special Java applet that exploited a Java bug, gaining access to the system.

Having Java installed increases your attack surface. Now picture a browser with multiple plugins

– Java, Flash, PDF reader, QuickTime, Silverlight, Unity Web Player, RealPlayer (I’m sure some

people still have that installed), and more – and you’ll see just how much plugins increase your

attack surface. Each plugin must be updated separately using its own update manager. While

browser vendors are under heavy scrutiny to write secure code, plugin developers don’t seem to

have the same urge in during development, and many of them have atrocious security records.

The unfortunate thing about compromising a plugin is that you can compromise multiple platforms

at once. Find a security hole in Flash and you’re able to compromise nearly every browser on the

planet – Internet Explorer on Windows, Safari on a Mac, Firefox on Linux – you can run wild.

My application being a chrome app is mandatory for it to follow the chrome app security model

that sandboxes any activity of the app to the app and that of the chrome browser to itself i.e. a

compromise of the browser may not affect the app and vice versa.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 11 of 72

2.1.4 HTTP Strict Transport Security (HSTS)

HTTP Strict Transport Security (HSTS) (Hodges, 2012), the successor of ForceHTTPS (Barth,

2008), is a HTTP response header that allows websites to instruct browsers to make SSL

connections mandatory on their site. By setting the HSTS header, websites may prevent network

attackers from performing SSL stripping (Moxie, 2009). A less obvious security benefit of HSTS

is that browsers simply hard-fail when seeing invalid certificates, and do not give users the option

to ignore SSL errors. This feature prevents users from accepting untrusted certificates when under

man-in- the-middle attacks by amateur script kiddies. However, HSTS is not designed to protect

against malware or professional attackers that use forged certificates that would be accepted by

the browser

2.1.5 Certificate validation by Notaries.

Also, there are some methods that has been designed to validate certificates by use of Notaries for

example, Perspectives (Wendlandt, 2008) is a Firefox add-on that compares server certificates

against multiple notaries (with different network vantage points) to reveal inconsistencies. Since

public notaries observe certificates from diverse network perspectives, a local impersonation

attack could be easily detected. Convergence (Marlinspike, 2011) extends Perspectives by

anonymizing the certificate queries for improved privacy, while allowing users to configure

alternative verification methods such as Domain Name System Security Extensions (DNSSEC).

The DetecTor (Engert, 2013) project which extends Doublecheck (Keromytis, 2009) makes use of

the distributed Tor network to serve as external notaries. Crossbear (Holz, 2012) further attempts

to localize the attacker’s position in the network using notaries. However, notary approaches might

produce false positives when servers switch between alternative certificates, and clients may

experience slower SSL connection times due to querying multiple notaries during certificate

validation. Further, these pure client-side defenses have not been adopted by mainstream browsers,

thus cannot protect the majority of (less tech-savvy) users.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 12 of 72

2.1.5 Certificate Transparency.

Additionally, proposals have suggested the idea of maintaining cryptographically irreversible

records of all the legitimately-issued certificates, such that mis-issued certificates can be easily

discovered, while off-the-record certificates are simply rejected. Sovereign Keys (Eckersley, 2015)

requires clients to query public timeline servers to validate certificates. Certificate Transparency

(CT) (Laurie, 2012) removes the certificate queries from clients by bundling each certificate with

an audit proof of its existence in the public log. Accountable Key Infrastructure (AKI) (Kim,

2013)further supports revocation of server and Certification Authority keys. These defenses are

designed to protect against network attackers (not including malware). However, browsers need

to be modified to support the mechanism, and changes (or cooperation) are needed on the CAs or

servers to deliver the audit proof. Encouragingly, Chromium includes support for Certificate

Transparency, a protocol defined by RFC 6962. Certificate Transparency is a way for interested

parties, such as Certificate Authorities, to provide a publicly auditable record of certificate

issuance, through submitting these certificates to a Certificate Transparency Log (Placeholder1).

Google is making Certificate Transparency mandatory for its Chrome web browser by October

2017 (Laurie & Langley, 2012). Google software engineer Ryan Sleevi made the announcement

in conjunction with the CA/Browser Forum that took place in Redmond, Washington (Sleevi,

2016).

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 13 of 72

CHAPTER 3

METHODOLOGY

3.1 Scrum Methodology

I have provided a scrum project management file that explicitly show all the development process

using the agile methodology Scrum. The file is a Sprintometer (an agile project management tool)

file.

Enhancing HTTPs Security against Sophisticated MITM attack Is a scope driven project that

satisfies security need from the product backlog or the business needs of the product. According

to Ken Schwaber (Schwaber, 2003), one of the originators of the Scrum method, scrum is a process

for managing complex projects. He stresses that it isn’t just limited to software development.

However, software development projects have a tendency to be very complex (Brooks, 1978) and

so Scrum is well suited for managing them.

3.1.1 Overview.

The Scrum method is incremental. Each increment is called a sprint and is recommended to last

for four weeks. Before the sprint, there is a sprint planning meeting where the customer decides

what features should be implemented in the upcoming sprint. During the sprint, the team meets

daily at a short meeting called a scrum or the daily stand-up meeting. At the end of a sprint, a sprint

review meeting is held where the customer gets to see what was accomplished during the sprint.

The team can also hold a sprint retrospective meeting where they look at the process and tries to

find out what went well and what can be improved. Schwaber uses Figure below to visualize the

flow of the method. The upper circle represents the daily activities of the team members, while the

lower circle represents the development activities that occur during a sprint.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 14 of 72

Figure 3. 1 Overview of Scrum Methodology

3.2 Scrum Artifacts.

Since Scrum is an agile method, it follows that the formality of the project is as low as possible.

This gave me the freedom to make change requests as often. However, it is considered important

that the customer can see the project progress since this improves their motivation and

involvement. Also, the team needs some formality to help them cooperate and focus their work.

The artifacts of Scrum are

1. the product backlog

2. the project burndown chart

3. the sprint backlog

4. the sprint burndown chart

5. the impediments list.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 15 of 72

3.2.1 The Product Backlog.

This could be considered equivalent to the requirements specifications but there is one big

difference. Instead of a long description of each requirement, the product backlog only has a single

sentence description of each requirement. This sentence should be enough to remind the customer

and the developers of what the feature is.

The Product Backlog is a list of such single sentence requirements. It is the customer’s

responsibility to keep it prioritized and updated. The customer adds requirements to this list and

then the team is responsible for estimating how long it will take to implement them.

Figure 3. 2 product backlog from story readiness report

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 16 of 72

Figure 3. 3 Product backlog burndown chart

The product backlog burn down chart depicts the development process of the product backlog item

throughout the development process.

3.2.2 The Project Burn down Chart.

This is a graph with the work remaining on the Product Backlog as the y axis and the time elapsed

since project startup as the x axis. The graph gives a visual representation of the project speed. It

can also be (and usually is) used to see when the project will be completed at the current

development speed.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 17 of 72

Figure 3. 4 project burndown chart with forecast

3.2.3 The Sprint Backlog.

This is a list of tasks maintained and compiled by the team based on the items from the product

backlog that were selected to be part of the sprint. The list is similar to the product backlog, but

there is a big difference. Where the items on the product backlog are features requested by the

user, the sprint backlog is a list of tasks the developers must do to implement the items that the

customer chose from the product backlog. The customer doesn’t need to know about the items on

the sprint backlog.

A general rule for the tasks on the sprint backlog is that they should be relatively short, i.e. between

one hour and two days. This makes it easier to estimate the tasks, something that makes the sprint

burn down chart (presented below) more accurate.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 18 of 72

Figure 3. 5 Sprint backlog From the Story readiness report

3.2.4 The Sprint Burn Down Chart

This is quite similar to the Project Burn down Chart, only that it measures the progress of the sprint

instead of the project. However, the sprint burn down chart differs from the product burn down

chart because the team usually discovers tasks they did not consider but that must be added to the

sprint backlog. Since the chart displays the amount of work remaining and not the amount of work

completed, the graph can in fact increase from one day to the next.

Figure 3. 6 Sprint backlog burn down chart

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 19 of 72

3.2.5 Impediment list.

An impediment is something that is holding back development in some way or another. The scrum

master’s responsibility to deal with any such impediments. This list is simply a set of tasks that the

scrum master uses to track the impediments that needs to be solved.

Impendent list is listed in the discussion section of this project report

3.3 Sprint

All work is done in sprints lasting four weeks. Each sprint is started with a planning meeting

divided in two sessions of at most 4 hours each. How the team works during the sprint is not

specified, however, Schwaber has written that XP compliments Scrum nicely (Schwaber, 2002).

XP covers engineering practices but doesn’t go into detail on management practices and Scrum

doesn’t cover engineering practices but is quite clear on management practices. The way I see it,

Scrum can be considered a replacement of the planning game in XP (Extreme Programming).

3.4 The Sprint Planning Meeting.

In the first session, the Customer chooses high priority items from the product backlog that should

be completed in the upcoming Sprint. The customer explains the items to the team and they give

an estimate on how long it will take to complete it. The sprint backlog is filled so that the sum of

the item estimates is about the same as the available work time of the team during the upcoming

sprint.

3.5 The Daily Activities.

During the sprint, the developers work on the items in the sprint backlog. Every day the developers

synchronize their progress in a daily Scrum meeting that should last no longer than 15 minutes.

During the meeting, all the developers will tell the others what they did since the last Scrum, if

there are any impediments obstructing their work and what they are planning on doing until the

next Scrum. Another important day to day activity is updating the sprint backlog and burndown

chart.

3.6 Sprint Review Meeting

At the end of the sprint, the team meets with the customer and presents the result of the sprint. The

users demonstrate the functionality they have completed and gets feedback from the customer. If

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 20 of 72

the demonstrated functionality is what the customer wanted, then this gives the team a feeling of

accomplishment as well as the customer a proof that the project is moving in the right direction. If

the demonstrated functionality isn’t quite what the customer was looking for it is now easy to

explain how it is different and what should be done next. In some cases, it is enough to make a few

changes while in other cases the implemented functionality must be discarded.

3.7 Sprint Retrospect Meeting

The intention of this meeting is to help the team improve their development process. The meeting

is attended by the team, the scrum master and the customer (optional). During the meeting the

team members take turns saying what went well during the last sprint, and what could be improved.

After all team members, have had their say, they prioritize the possible improvements and discuss

them in order. The meeting should not last more than 3 hours.

3.8 Project Startup

Ken Schwaber has had much success with his kick-starting of Scrum projects as described in the

book Agile Project Management with Scrum (Schwaber, 2002). This process goes as follows.

The Scrum Master works with the customer and prepares a backlog. Then the Scrum Master, the

Customer and the Team uses one day to go over this backlog. During this first day, the customer

explains the items in the backlog to the team, and the team estimates how much work it would take

to implement this. The customer then prioritizes the items in the backlog and divides the backlog

items into sprints. The following day is the first day of the first sprint. This first sprint isn’t very

different from the following sprints, except that the first part of the sprint planning meeting has

already been completed.

The team is now in complete control and have one task, namely to deliver the functionality the

customer has requested. The sprint has begun.

3.9 Project Completion

As the project moves on and sprints are being completed, the customer will receive increments of

the product. If the customer realizes that the product is good enough and that further development

is unnecessary, then he should be able to stop the project. Depending on the contract that has been

negotiated, there can be a penalty fee for premature termination of the project.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 21 of 72

CHAPTER 4

SOFTWARE DEVELOPMENT.

Software Analysis and Requirement

This is the process of determining user expectations for a new or modified product. These

features, called requirements, must be quantifiable, relevant and detailed.

4.1 Study of the current system.

We studied two defects in the current system that may allow the compromise of secure encrypted

connections and the integrity of the SSL certificate used.

4.1.1 The Trouble with HTTP Strict Transport Security (HSTS)

Almost a year and a half after the HTTP Strict Transport Security (HSTS) mechanism was

established as a standard, its adoption rate by websites remains low because developers are not

aware of its benefits and Internet Explorer still doesn't support it, according to advocacy group the

Electronic Frontier Foundation. This low rate of low adoption has been influenced by HSTS opting

in security which can really devastate the availability of the website.

However, the support for HSTS in browsers has been incomplete, which likely discouraged

websites from enabling the mechanism. "Only Chrome, Firefox, and Opera have had HSTS

support for a significant period," the EFF technologist said (Constantin, 2014). "This is changing

though: we noticed that Apple quietly added HSTS support to Safari in OS X 10.9. For now,

Internet Explorer doesn't support HSTS -- which means that there's basically no such thing as a

secure website in IE."

One problem with HSTS is that it assumes the first ever connection from a browser to a HTTPS

website is achieved securely, without a man-in-the-middle attacker interfering and removing the

HSTS policy header. In order to partially mitigate this problem Google Chrome and Mozilla

Firefox contain pre-loaded lists of HSTS sites. This has been in practice difficult to implement for

example, get actual sites supporting HSTS then add the site to a list on the client browser

(Constantin, 2014). This was also a design flaw if the first connection is compromised and the

preceding connections are compromised too how can HSTS prove to be useful?

HSTS does not persist browser restart it needs to be reconfigured again.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 22 of 72

4.1.2 The Trouble with Certificate Transparency.

With the current certification authority mechanisms, it does not cater for man-in-the middle-attacks

that leverage themselves in the network. Also, the log servers that contains the certificate bundle

verification is kept away from the client browser access. This design flaw has enable the

exploitation of encrypted connection by using rogue certificates (Slepak & Greg, 2014).

(Greg, 2014)

4.1.3 Requirements of the new system.

The new system must be in a position to Enforce HTTPS connections and validate the integrity if

the SSL/TLS certificate used. In Enhancing HTTPS connections, it should ensure the ability to

detect a first compromised connection and should persist browser restarts. In validating the

SSL/TLS certificate the client browser should have a mechanism to authenticate it to an updated

open certificate transparency platform.

Benefits of Certificate Transparency.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 23 of 72

i. Certificate Transparency leads to a situation where “It becomes impossible to misuse a

certificate without detection”

ii. Certificate Transparency is a “Generally applicable” system where “No one is special”

and where everyone “[is] able to participate”.

iii. Certificate Transparency doesn’t introduce trusted third-parties.

iv. Certificate Transparency doesn’t push decisions onto the end user.

v. That DNSChain wastes energy and “has no mechanism for verification”.

4.1.4 Functional System Requirements

The following are the system requirements for enhancing HTTPS security against sophisticated

man-in-the-middle attacks.

i. Mandatory enforce HTTPS connections on all trackers.

ii. Enforce HTTPS connections on depreciated HTTP connections

iii. Allow the user to create a whitelist of trusted websites that do not support HTTPS

connections

iv. Reveal the status and Integrity of the SSL/TLS certificate on all trackers and the

requested urls.

v. Inform the user on a change in SSL certificate and inform the user.

vi. Allow the user to gain support from a browsing Secure community

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 24 of 72

4.1.5 Non-Functional Requirements

Requirement Description

Usability The interface should use terms and concepts, which are drawn from the

experience of the people who will make most of the system. For example, the

language should be non-technical.

Efficiency The system must provide easy and fast access without consuming more resources

Reliability User should never be surprised by the behavior of the system and it should also

provide meaningful feedback when errors occur so that user can recover from

the errors.

privacy User data shall not be leaked for whatsoever reason

App security The apps should be resilience to attacks

4.1.6 Feasibility Study.

The aim of the feasibility study activity is to determine whether it would be financially and

technically feasible to develop the system or not. A feasibility study is carried out from following

different aspects:

Feasibility Study Description

Operational Feasibility: The apps and extensions have been developed for any user who wants

to use them. We have given a demo of our project and the users found

the system friendly and easy to use. The interoperability with the

existing system is also checked after integrating them to google chrome

browser.

Technical Feasibility: It determines if the system can be implemented using the current

technology. This has been developed on purely JavaScript, JavaScript

libraries and JSON. Which play a functional communication role with

chrome browser application programming interfaces (APIs)

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 25 of 72

Economic Feasibility The development may be expensive due to labor and development tools

but the product has high return that dwarfs the development expense

Implementation

Feasibility

This project can easily be made available online without much

consideration of the hardware and software. The only required thing at

the applicant’s side is the Internet connection and Chrome web browser,

which are a no difficult issue these days. After setting up the project

online, even the development team can access the apps from anywhere.

4.1.7 Functions of the system

Intuitively, use cases represent the different ways in which the users can use a system.

4.1.7.1 Strict SSL use case diagram.

Figure 4. 1 Strict SSL use case Diagram

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 26 of 72

4.1.7.2 Cert Monitor use case diagram

Figure 4. 2 Certificate Monitor Use Case Diagram

4.1.7.3 Cert Monitor Sequence Diagram

Figure 4. 3 Certificate Monitor Sequence Diagram

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 27 of 72

4.1.8 Hardware and Operating system considerations.

The application and browser extensions have been developed for google chrome browser.

Therefore, the hard Your computer must meet the minimum system requirements before you can

install and use Chrome

It's possible that Chrome may install on other platforms or versions not listed here, however

Google enterprise level support is limited to systems that meet the minimum requirements. Google

does not provide support if you install Chrome on any system that does not meet the specified

criteria.

Windows

To use Chrome on Windows, you'll need:

i. Windows 7, Windows 8, Windows 8.1, Windows 10 or later

ii. An Intel Pentium 4 processor or later that's SSE2 capable

Mac

To use Chrome on Mac, you'll need:

i. OS X Mavericks 10.9 or later

Linux

To use Chrome on Linux, you'll need:

i. 64-bit Ubuntu 14.04+, Debian 8+, openSUSE 13.1+, or Fedora Linux 21+

ii. An Intel Pentium 4 processor or later that's SSE2 capableware requirement are of those

that can run optimally of google chrome browser.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 28 of 72

4.1.9 Programming languages, libraries and chrome APIs used

The development of the project “Enhancing HTTPS Security Against Sophisticated MITM

Attacks” is composed of the following components:

Programming languages.

Programming language Why this programming language

JavaScript In computer science, a programming language is said to support first-

class functions if it treats functions as first-class objects. Specifically,

this means that the language supports constructing new functions during

the execution of a program, storing them in data structures, passing them

as arguments to other functions, and returning them as the values of

other functions. JavaScript functions are First Class functions

JSON JavaScript Object Notation is a lightweight data-interchange format. I

used it to create the manifest.js of my chrome app and extensions

Table 4. 1 Programming Languages Used

Chrome APIs used

Chrome API used Description

chrome.webRequest I used the chrome.webRequest API to observe and analyze traffic and to

intercept, block, or modify requests in-flight.

chrome.extension The chrome.extension API has utilities that can be used by any extension

page. It includes support for exchanging messages between an extension

and its content scripts or between extensions, as described in detail in

Message Passing.

chrome.storage I used the chrome.storage API to store, retrieve, and track changes to user

data.

chrome.sockets I used the chrome.socket API to send and receive data over the network

using TCP and UDP connections

chrome.runtime I used the chrome.runtime API to retrieve the background page, return

details about the manifest, and listen for and respond to events in the app

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 29 of 72

or extension lifecycle. You can also use this API to convert the relative

path of URLs to fully-qualified URLs.

Table 4. 2 Chrome APIs Used

Libraries used.

JavaScript library used Description

Forge.min.js The Forge software is a fully native implementation of the TLS protocol

in JavaScript as well as a set of tools for developing Web Apps that utilize

many network resources.

Moment.js Parse, validate, manipulate, and display dates in JavaScript.

URI.js URI.js is a JavaScript library for working with URLs.

Underscore-min.js Underscore provides over 100 functions that support both your favorite

workaday functional helpers: map, filter, invoke — as well as more

specialized goodies: function binding, javascript templating, creating

quick indexes, deep equality testing, and so on.

Restruct.js restruct.js performs conversion to and from binary data types. It utilizes

an intuitive declarative API to define formats for binary structure parsers

and emitters. It works in both the browser and on Node.

Table 4. 3 Libraries Used

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 30 of 72

Software Design

4.2 Introduction

During analysis, the focus is on what needs to be done intendment of how it is done. During

design, decisions are made about how the problem will be solved, first at a high level, then at

increasingly detailed levels.

System design is the first stage in which the basic approach to solving the problem is

selected. During system designing the overall structure and style are decided. The system

architecture is the overall organization of the system into components called system. System

design deals with transforming the customer requirements, as described in the product backlog,

into a form that is implement able using the programming language.

As a system designer, we are tried to take following design decisions:

i. Organize the system into an application and two extensions.

ii. Organize sub-modules for each extension.

iii. Allocate tasks to the application.

iv. Choose an approach to manage data store.

v. Handle access to global resources.

vi. Choose an implementation logic.

4.2.1 Designs considerations during problem solving.

With the problem at hand which is to enforce encryption for websites that support HTTPS as much

as currently possible in Chrome browser and enable client browser to connect to an encrypted

connection and display certificate integrity information to the client, we meet these two

requirements with the following designs models.

i. We had to get control of the client browser requests.

ii. We had to make our application resilience to any attacks. Moreover, this is safe guarded

by the chrome app security model.

4.2.2 Rationale for choosing the design models.

Adversaries when performing man in the middle attacks leverage themselves on the network. This

is due the improved security on the server and client browser with modern technology. However,

adversaries may change how data is exchanged over the network bleeding out lots of exploits. SSL

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 31 of 72

stripping which connects the client browser to unencrypted connection and SSL/TLS sniffing

attacks which utilizes forged certificates can be defeated in design.

Defeating SSL Stripping in design is to redirect any requested url by the client browser to an

application that connect only in HTTPS and closing out all requests from the client browser.

Redirection that happens immediately after request defeats any SSL Stripping in the network due

to a change in scope of the attack tool logic and capability of the network. For example, if an SSL

Stripping tool is placed on the network to listen to browser client request may listen infinity due

to immediate redirection. In my Strict SSL extension and Cert Monitor app I have redirected

request to localhost. Localhost redirection are far out of scope on any threat design models that

leverages itself on the network since this has a loopback function to the client browser. This will

not leverage the attacks on the attack tool on the network.

4.2.3 Chrome Browser App Architecture.

Chrome Apps integrate intimately with a client's operating system. They are intended to be running

outside of a browser tab, to run robustly in offline and poor network situations and to have

significantly more capable capacities that are available in a typical web browsing environment.

The app container, programming, and security models support these Chrome App requirements.

Requirement 1. App Container Model.

The app container describes the visual appearance and loading behavior of Chrome Apps. Chrome

Apps look different than traditional web apps because the app container does not show any

traditional web page UI controls; it simply contains a blank rectangular area. This allows an app

to blend with “native” apps on the system, and it prevents the user from “messing” with the app

logic by manually changing the URL.

Chrome Apps are loaded differently than web apps. Both load the same type of content: HTML

documents with CSS and JavaScript; however, a Chrome App is loaded in the app container, not

in the browser tab. Also, the app container must load the main document of the Chrome App from

a local source. This forces all Chrome Apps to be at least minimally functional when offline and

it provides a place to enforce stricter security measures.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 32 of 72

Figure 4. 4 App container Model

Requirement 2. Programming model

The programming model describes the lifecycle and window behavior of Chrome Apps. Similar

to native apps, the goal of this programming model is to give users and their systems full control

over the app lifecycle. The Chrome App lifecycle should be independent of browser window

behavior or a network connection.

The “event page” manages the Chrome App lifecycle by responding to user gestures and system

events. This page is invisible, only exists in the background, and can be closed automatically by

the system runtime. It controls how windows open and close and when the app is started or

terminated. There can only be one “event page” for a Chrome App.

Requirement 3. App lifecycle

App lifecycle defines the app runtime from initialization to termination. However, chrome app

lifecycle is defined by the app runtime and event page. These are responsible for managing the app

lifecycle. The app runtime manages app installation, controls the event page, and can shut down

the app at any time. The event page listens out for events from the app runtime and manages what

gets launched and how.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 33 of 72

Figure 4. 5 App life cycle

Stage Summary

Installation User chooses to install the app and explicitly accepts the permissions.

Startup The event page is loaded, the 'launch' event fires, and app pages open in

windows. You create the windows that your app requires, how they look, and

how they communicate with the event page and with other windows.

Termination User can terminate apps at any time and app can be quickly restored to previous

state. Stashing data protects against data loss.

Update Apps can be updated at any time; however, the code that a Chrome App is

running cannot change during a startup/termination cycle.

Uninstallation User can actively uninstall apps. When uninstalled, no executing code or private

data is left behind.

Table 4. 4 App Lifecycle Table

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 34 of 72

Requirement 4 Security model.

The Chrome Apps security model protects users by ensuring their information is managed in a safe

and secure manner. Comply with Content Security Policy (Google, 2016) includes detailed

information on how to comply with content security policy. This policy blocks dangerous scripting

reducing cross-site scripting bugs and protecting users against man-in-the-middle attacks.

Loading the Chrome App main page locally provides a place to enforce stricter security than the

web. Like Chrome extensions, users must explicitly agree to trust the Chrome App on install; they

grant the app permission to access and use their data. Each API that your app uses will have its

own permission. The Chrome Apps security model also provides the ability to set up privilege

separation on a per window basis. This allows you to minimize the code in your app that has access

to dangerous APIs, while still getting to use them.

Chrome Apps reuse Chrome extension process isolation, and take this a step further by isolating

storage and external content. Each app has its own private storage area and can’t access the storage

of another app or personal data (such as cookies) for websites that you use in your browser. All

external processes are isolated from the app. Since iframes run in the same process as the

surrounding page, they can only be used to load other app pages. You can use the object tag to

embed external content; this content runs in a separate process from the app.

4.2.4 Strict SSL Design.

Strict SSL in design and in practice achieves to automatically connect a site to encrypted HTTPS

connection and enforces all subsequent request to be over SSL. As soon as the domain is set to

enforce, the browser will not send any unencrypted requests even if the application is paused the

only way to connect to unencrypted connection is by whitelisting the site or the site no longer

supports HTTPS connections. In design and practice the Strict SSL will cache all site which

support SSL this reduces overhead and quick connection. Strict SSL in set to respect incognito

mode of the chrome browser that states no caching of user data including caches for whatsoever

reason.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 35 of 72

Figure 4. 6 Strict SSL Design

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 36 of 72

4.2.5 Certificate Monitor Design.

Cert Monitor in design and in practice sets to achieve validate the integrity of the SSL/TLS

certificate.

Figure 4. 7 Certificate Monitor Design

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 37 of 72

Software Implementation.

4.3 Software Implementation Environment.

The implementation view of software requirement presents the real-world manifestation of

processing functions and information structures. This computerized system is specified in a

manner that dictates accommodation of certain implementation details.

The implementation environment of the developed app and extensions facilitates multiple tabs to

use this system simultaneously. The user interfaces are designed keeping in mind that the users of

this system are familiar to using GUI-based systems. Thus, we restricted ourselves to developing

a GUI-based system so that it becomes easier for the end user to get acquainted to the developed

app and extensions.

4.3.1 4-Tier Implementation architecture

Figure 4. 8 4-Tier Implementation Architecture

We have also followed the web based 4-tier architecture as the implementation architecture which

is as follows:

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 38 of 72

Layer 1. The presentation tier or user services layer

This layer gives a user access to the application. It contains all the web page so it is this interface

through which user can access the application. This layer presents data to the user and optionally

permits data manipulation and data entry.

Layer 2. The control tier or control layer.

This layer gives a good separation between code and its connectivity with local storage and chrome

APIs. This layer includes the JavaScript code and JavaScript libraries.

Layer 3. The business services layer.

It consists of business and data rules. Also, referred to as the business logic tier, the middle tier is

where we as developers can solve mission-critical business problems and achieve major

productivity advantages. The components that make up this layer can exist on a host machine, to

assist in resource sharing. These components can be used to enforce business rules, such as

business algorithms and data rules, which are designed to keep the data structures consistent within

either specific or multiple local storages. Because these middle-tier components are not tied to a

specific client, they can be used by all applications and can be moved to different locations, as

response time and other rules require. In my project the chrome app holds all the acceptance criteria

of the product backlog.

Layer 4. The data tier or data services layer.

This layer interacts with persistent data usually stored in a database or in permanent storage. In my

case, it interacts with data stored in the client host machine. In this layer, we have implemented

the basic function through data can be accessed like insert, update, delete, selection.

Our Requirements are changing dynamically so we used four-tier architecture. The four-tier

approach provides benefits such as reusability, flexibility, manageability, maintainability, and

scalability.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 39 of 72

Software Development Testing.

4.4 Testing Plan.

Software Testing has a dual function; it is used to identify the defects in program and it is used to

help judge whether or not program is usable in practice. Thus, software testing is used for

validation and verification, which ensure that software conforms to its specification and meets

need of the software customer.

We resorted to Alpha testing, which usually comes in after the basic design of the program has

been completed. The project supervisor will look over the program and give suggestions and ideas

to improve or correct the design. They also report and give ideas to get rid of around any major

problems. There is bound to be a number of bugs after a program have been created.

Figure 4. 9 Top-down Test Methodology

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 40 of 72

Test Description

Unit Testing Unit testing is a software development process in which the smallest

testable parts of an application, called units, are individually and

independently scrutinized for proper operation.

Module Testing Module testing is the testing of complete code objects as produced by

the compiler when built from source

Sub System Integration

Testing

Sub-system integration testing focuses on testing the external APIs

(Application Programming Interfaces) between sub-systems.

System Testing The system testing procedure tests for errors resulting from

unexpected interactions among sub-systems and system components.

Acceptance Testing The purpose of this test is to evaluate the system's compliance with

the business requirements and assess whether it is acceptable for

delivery.

Request test satisfaction The purpose of this test is to ensure that the goals of the test were

meet

Test satisfaction This approves the Test procedure and ends Test

Table 4. 5 Top-down Testing Methodology Description

4.4.1 The Testing Process

We test the software process activities such as Design, Implementation and sprint backlog items.

Because, design errors are very costly to repair once system has been started to operate, it is quite

obvious to repair them at early stage of the system. So, analysis is the most important process of

any project.

4.4.2 Requirement Traceability

As most interested portion is whether the system is meeting its requirements or not, for that testing

should be planned so that all requirements are individually tested. We checked the output of certain

combination of inputs so that we can know whether it gives desirable results or not. Strictly

sticking to your requirements specifications, give you the path to get desirable results from the

system.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 41 of 72

4.4.3 Testing Schedule

We have tested each procedure back-to-back so that errors and omissions can be found as early as

possible. Once the system has been developed fully we tested it on other machines, which differs

in configuration. We had volunteers from the browsing secure community who literary tested the

working of the application. Testing went concurrent with the development.

4.4.4 Test Strategy

There are types of testing that we implement. They are as follows:

1. Project resilience towards compromises. For example, for man-in-the-middle attacks the

time span of the attacks are very short and can be well achieved in design. Spend more

better designs that defend the user in logic and operation.

2. Decide on the effort required for testing based on the usage of the security solution. If the

system is to be used by a large number of users, evaluate the impact on users due to a

system failure before deciding on the effort.

3. A necessary part of the test case is a definition of the expected result.

4. Write test cases for invalid and unexpected as well as valid and expected input conditions.

5. Thoroughly inspect the results of each test.

6. We have performed both Unit Testing and System Testing on the applications and

extensions to detect and fix errors. A brief description of both is given below.

4.4.5 Unit Testing

Objective

The objective of Unit Testing is to test a unit of code (program or set of programs) using the Unit

Test Specifications, after coding is completed. Since the testing will depend on the completeness

and correctness of test specifications, it is important to subject these to quality and verification

reviews.

Input

1. Unit Test Specifications

2. Code to be tested

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 42 of 72

Testing Process

1. Checking for availability of Code Walk-through reports which have documented the

existence of and conformance to coding standards.

2. Verify the Unit Test Specifications conform to the program specifications.

3. Verify that all boundary and null data conditions are included.

4. Features to be tested

Features to be tested.

Test Specification Description

Functionality Test All possible scenarios to test the functionality

of the component are listed here. This list is

made very exhaustive to cover all the expected

functionality described in the Software

Requirement Specifications and Design

document completely.

‘Valid SSL/TLS’ as well as ‘Invalid SSL/TLS’

connections are clearly articulated.

Suitable Error/ Warning Messages

Connection Status on Access to a site The user should be easily being able to tell the

connection type to our app and extension

Privacy Concerns The applications should not handle user

sensitive data

Table 4. 6 Features to be Tested

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 43 of 72

Unit Test Specifications

A sample Unit Test Specification is as follows.

 Form Template Functionality

4.4.6 Integration Testing

After our individual modules were tested out we proceed to the integration testing to create a

complete system. This integration process involves building the system and testing the resultant

system for problems that arise from component interactions.

We have applied top-down strategy to validate high-level components of a system before design

and implementations have been completed. Our development process started with high-level

components and we worked down the component hierarchy.

4.4.7 System Testing

System testing is actually a series of tests whose purpose is to fully exercise the computer-based

system. It verifies that system elements have been properly integrated and perform allocated

Event Action Expected Result Observed result Verified

1. On pressing

enforce button

The enforced urls on the tab

should reload to HTTPS

As Expected YES

2. On pressing

options link

Open the whitelist and enforced

lists

As Expected YES

3. On pressing

ignore

Should allow the requested url to

connect normally no enforcing

HTTPS connection

As Expected YES

4. On pressing

redetect

Should switch between HTTP and

HTTPS connections

As Expected YES

5. On pressing

clear button

Stored list of url should be cleared

fom the storage list

As Expected YES

6. On pressing

pause button

Strict SSL should pause its

activities and wait for a reload

As Expected YES

Table 4. 7 Unit Testing for Strict SSL

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 44 of 72

functions. It checks whether the system as a whole works as per requirement. We have used

Performance testing. Performance testing - designed to test the run-time performance of software,

especially real-time software.

4.4.8 Performance Testing

This is designed to test the run-time performance of software within the context of an integrated

system. Performance testing occurs throughout all steps in the testing process. Our system is

checked for high load as well as low load.

4.4.9 Test Cases

A test case is a set of conditions or variables and inputs that are developed for a particular goal or

objective to be achieved on a certain application to judge its capabilities or features.

It might take more than one test case to determine the true functionality of the application being

tested. Every requirement or objective to be achieved needs at least one test case. Some software

development methodologies like Rational Unified Process (RUP) recommend creating at least two

test cases for each requirement or objective; one for performing testing through positive

perspective and the other through negative perspective.

Test Case Structure

A formal written test case comprises of three parts -

Information

Information consists of general information about the test case. Information incorporates Identifier,

test case creator, test case version, name of the test case, purpose or brief description and test case

dependencies.

Activity

Activity consists of the actual test case activities. Activity contains information about the test case

environment, activities to be done at test case initialization, activities to be done after test case is

performed, and step by step actions to be done while testing and the input data that is to be supplied

for testing.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 45 of 72

Results

Results are outcomes of a performed test case. Results data consist of information about expected

results and the actual results.

Designing Test Cases

Test cases should be designed and written by someone who understands the function or technology

being tested. A test case should include the following information -

1. Purpose of the test

2. Software requirements and Hardware requirements (if any)

3. Specific setup or configuration requirements

4. Description on how to perform the test(s)

5. Expected results or success criteria for the test

Designing test cases can be time consuming in a testing schedule, but they are worth giving time

because they can really avoid unnecessary retesting or debugging or at least lower it. Organizations

can take the test cases approach in their own context and according to their own perspectives.

Some follow a general step way approach while others may opt for a more detailed and complex

approach. It is very important for you to decide between the two extremes and judge on what would

work the best for you. Designing proper test cases is very vital for your software testing plans as a

lot of bugs, ambiguities, inconsistencies and slip ups can be recovered in time as also it helps in

saving your time on continuous debugging and re-testing test cases.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 46 of 72

4.4.5.1 Test case for Certificate Monitor

Sr. No. Test Condition Expected

Output

Actual Output Pass/Fail

1 Get host recent

certificate

Certificate

Acquired

True Pass

2 Save host recent

certificate

Certificate saved True Pass

3 Validate

certificate

Validation

satisfied

True/False pass

4 Parse host

certificate

Certificate

parsed

True pass

5 Update cert

bundle

Certificate

bundle updated

True pass

Table 4. 8 Test Case for Certificate Monitor

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 47 of 72

4.4.5.2 Test case for Certificate Monitor App Debugging

Sr.

No.

Test Condition Expected Output Actual Output Pass/Fail

1 Invoke

sockets.tcpserver.listen

sockets.tcpServer.listen sockets.tcpserver.listen pass

2 Invoke

sockets.tcpserver.create

sockets.tcpserver.create sockets.tcpserver.create pass

3 Save data to its local

storage

storage.set Storage.set pass

4 Invoke blink request

resource

blink.request.resource blink.request.resource pass

5 Retrieve data it has

stored

storage.get Storage.get pass

6 Invoke sockets.tcp.send sockets.tcp.send Sockets.tcp.send pass

7 Invoke

sockets.tcp.onrecieve

sockets.tcp.onrecieve sockets.tcp.onrecieve pass

8 Notified of messages

from other extension

runtime.onMessage

externals

runtime.onMessage

externals

pass

Table 4. 9 Test case for chrome app debugging

4.4.5.3 Test Case for Strict SSL Extension

Sr.

No.

Test

Condition

Expected Output Actual Output Pass/Fail

1 Redirect a

request to a

new webpage

Webrequest.onBeforeRequest Webrequest.onBeforeRequest pass

Table 4. 10 test case for Strict SSL

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 48 of 72

CHAPTER 5

Discussion and Conclusion

5.1 Problems that Strict SSL and Cert Monitor set to solve.

The two chrome based security solutions meant to enhance HTTPS security is to uncover the threat

that results from unencrypted connections. The unencrypted connection may result from a client

browser connection via http port 80. Also, there were trackers to website that handled user data

or had the ability to gather client related data. These trackers if they set to connect over http

unencrypted connection they may compromise the security of the of the client regardless the ability

of the client to connect over secure https connections. Therefore, there was a need to connect the

trackers mandatory over HTTP + SSL encrypted connection. Moreover, there is a possibility of

questioning of the SSL/TLS certificate used to connect the encrypted HTTPS encrypted

connection. This led to need to verify if the certificate integrity.

The motivation behind the problem was to set out to answer these two major problems.

1. Does the client browser connect over encrypted connection? And if that’s the case

2. Is the integrity of the SSL/TLS certificate viable?

My security solution was set to answer the two questions with high degree of simplicity and

articulation.

5.2 How the Strict SLL set to ensure HTTP + SSL connections.

The chrome extension Strict SSL ensured that the client browser requests were redirected to https

connections and no user request was made to the server directly. This was achieved by design in

the app system development. Strict SSL also allows the user to still connect to the websites that

do not currently support HTTPS connection. Additionally, Strict SSL allow the user to cache a list

of mandatory websites that he/she wishes to secure connect. By just a single button known as

enforce.

5.3 How the Certificate Monitor set to ensure the integrity of the of the certificate.

The Certificate Monitor chrome browser application ensure the integrity of the SSL/TLS

certificate used as is it compares the certificate against a trusted SSL/TLS certificate bundle

supported and maintained the Mozilla foundation. Moreover, it also compared the certificate

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 49 of 72

against the requested urls and the embedded urls. Furthermore, Certificate Monitor also checks a

change in certificate by access the certificates vaults in the client machine and tracks changes to

the certificate and displays any suspicious activity to the user. This is well illustrated in the design

part of the system development phase.

5.4 Problem Encountered in the system conceptualization towards system actualization.

5.4.1 General problems encountered.

Challenged Faced Triumph Over Challenge

Limited Development

time

Scrum Methodology proved to an efficient and effective in the

development of quality products over a limited time

SSL Certificate Design

Modelling

The ability to acquire the SSL/TLS certificate was completely

difficult as it led an actual implementation of TLS handshake in the

chrome browser application

Development team

exhaustion

The two products were developed by a team of two people.

Limited Finances The testing of the connection required online connectivity as

localhost test environment was limited to self-signed certificates.

Self-signed certificated are really confusing to the end user as

he/she may not realize the true integrity of the certificate.

Busy schedule I used Wunderlist a to do application that categorized my daily

activities in two parts 95% critical to do activities and the rest.

Team downtime Intense development needs lots of coffee. I occasionally forgot to

buy coffee.

Change Request during

system development

The Scrum methodology played a real close part in achieving that

change requests were successfully appreciated

Table 5. 1 General Problems Faced

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 50 of 72

5.4.2 Challenges faced during the development of Strict SSL chrome browser extension.

Challenged Faced Triumph Over Challenge

Blacklisting and

Whitelisting of urls in

accordance to the set rules

The blacklisted and whitelisted urls were saved to a local storage in

the client browser cache storage that was auto started during

initializations of the chrome browser extension and browser

Respecting the Incognito

mode of the chrome

browse application

My applications had to be that the browser has opened an incognito

tab and respect it according to the chrome browser incognito mode

policy and restrictions.

Infinite loop detection of

blacklisted urls

I made prioritization to the blacklist in code.

Chrome browser

prioritization to load http

connections

I have the extension to behave in such a way it caches the urls and

when a url is enforced this shall also be enforced by the chrome

browser even on reloading

Privacy concerns I carried out stereotyping tests to reveal what my application had

control over and permissions set.

Security of the extension The chrome extension shall only be accessible for general use from

the google chrome web store and shall be packaged by a private key

which shall be used for any modification to the chrome browser

extension

No passwords and

Usernames

I stripped out any other detail from the urls during redirection and

just got the domain.

Table 5. 2 Challenges faced during the development of Strict SSL chrome browser extension

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 51 of 72

5.2.3 Challenges faced during the development of the chrome browser application.

Challenged Faced Triumph Over Challenge

Ability to get the host

recent certificate

I was able to enable my application to access the Certificate store on

the client host machine

Ability to get the host

recent certificate

There is a workaround by utilization of chrome storage application

programming interface (API).

“chrome.storage.local.get”

Ability save Host

certificate record.

There is a workaround by utilization of chrome storage application

programming interface (API).

“chrome.storage.local.set”

Behavior attacks on the

chrome browser

application

I disabled any logging information to the console even in code I

commented out and shall only be made possible in a debugging

process.

Validation of certificate Certificates shall be validated by an ever-updated certificate bundle

which shall be triple checked in the browser, requested urls and

embedded urls

Updating the certificate

bundle

Since the certificate bundle is strictly hashed by the Mozilla

foundation I set an update to 24 hours to my application

Security of the application The chrome extension shall only be accessible for general use from

the google chrome web store and shall be packaged by a private key

which shall be used for any modification to the chrome browser

extension

Misconfigurations from

the user

The app does have any user manipulation and the user is only

notified through an extension.

Table 5. 3 Challenges faced during the development of the chrome browser application

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 52 of 72

5.2.4 Challenges faced during Certificate Monitor app extension

Challenged Faced Triumph Over Challenge

Refresh rate for

Notifications from the

app

Initially there was no refresh rate but I set the refresh rate to 30

seconds rather than 1000 seconds

Ability for the extension

to identify new tabs

I used a reset counter to change onto new tabs.

Security of the extension The chrome extension shall only be accessible for general use from

the google chrome web store and shall be packaged by a private key

which shall be used for any modification to the chrome browser

extension

Table 5. 4 Challenges faced during Certificate Monitor

5.2.5 How my application and extension have meet the objectives.

Objective Attainment of the Objective

To mandatory enforce

HTTPS connections on

all trackers

All trackers to a website shall strictly connect to encrypted

connection. This has been achieved by the chrome browser

application Certificate Monitor

To enforce HTTPS

connections on

depreciated HTTP

connections

Strict SSL has ensured that the requested web urls have been

redirected immediately to connect to HTTPS connections.

All encrypted connections shall be added to the enforced list

automatically to reduce overhead.

Strict SSL also checks if a site supports SSL/TLS and enforces all

subsequent requests to be over SSL.

To inform the user on a

change in SSL certificate

and inform the user.

The chrome app has the ability to alert the user on the possibility of

a connection to unencrypted connection and show the validity of the

integrity of the certificate.

To reveal the status of the

SSL certificate on all

trackers

Certificate monitor displays through the chrome extension the status

of the SSL certificate.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 53 of 72

CONCLUSION

5.3.1 Recommendations

I recommend the application to every internet user who wishes to remain secure over encrypted

connections and seeks to validate his/her secure connection in the most transparent manner with

no additional hardware or software (or more precisely; at no further expense). I personally tell

him/her this is the app to integrate and start a secure browsing experience.

5.3.2 Future Implementation.

Since Google has a Certificate Transparency Project that seeks to fix several structural flaws in the

SSL certificate system, which is the main cryptographic system that underlies all HTTPS

connections, by providing an open framework for monitoring and auditing SSL certificates this

will allow me to develop a more resilience access to the basic components that drive certificate

transparency such verification of certificates.

I would also to support the users as much as possible in the browsing secure community and

customize security solution to their best need and interests of security.

5.3.3 Conclusion

Strict SSL and Cert Monitor chrome browser extensions and application respectively, provides the

user with added security features in your browsing experience and greatly improves your privacy

online. This is also made as transparent and automatic as possible. On Untrusted networks this is

particularly important namely the internet via public connections such as public service vehicles,

coffee shops and hotels.

Since Cert Monitor checks for third party connections known as trackers when you visit a page, it

checks whether if these trackers connect over HTTPS. With this knowledge, you can tweet to the

browsing secure community to create a change movement to the websites hosts and ask them to

implement better security practices on their sites also you can also inquire the need of such trackers

to the website site. However, remember to thank the sites that have implemented good security

practices.

The security solutions have the advantage of being lightweight, informative, and simple to install.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 54 of 72

REFERENCES

(n.d.).

Barth, C. J. (2008). ForceHTTPS: protecting high-security web sites from network attacks,. In

Proceedings of the 17th International Conference on World Wide Web,.

Brooks, J. F. (1978). The Mythical Man-Month: Essays on Software Development. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc.

Chen, M. W. (2009). Pretty-Bad-Proxy: An overlooked adversary in browsers’ HTTPS

deployments. in Proceedingsof the IEEE Symposium on Security and Privacy.

Comodo. (2011, 03 26). Comodo Report of Incident - Comodo detected and thwarted an

intrusion on 26-MAR-2011. Retrieved from http://www.comodo.com/Comodo-Fraud-

Incident-2011-03-23.html

Constantin, L. (2014, 4 8). Low adoption rate of HSTS website security mechanism is worrying,

EFF says. Retrieved 12 1, 2016, from InfoWorld:

http://www.infoworld.com/article/2610723/security/low-adoption-rate-of-hsts-website-

security-mechanism-is-worrying--eff-says.html

Eckersley, P. (2015). Sovereign key cryptography for internet domains. Retrieved from

pde@eff.org: https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-

design.txt;hb=master

Engert, K. (2013, 09 16). DetecTor. Retrieved from http://detector.io/DetecTor.html

Fahl, Harbach, Muders, Baumgärtner, Freisleben, & smiths. (2013). Rethinking SSL

development in an appified world. in Proceedings of the ACM Conference on Computer

and Communications Security.

Freedman, M. C. (2007). Peering through the shroud: the effect of edge opacity on IP-based

client identification. In Proceedings of the 4th USENIX Symposium on Networked

Systems Design and Implementation.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 55 of 72

Georgiev, (2012). The most dangerous code in the world: validating SSL certificates in non-

browser software. in Proceeding of Conference on Computer and Communications

Security.

Google. (2016). Content Security Policy - Google Chrome. Retrieved 12 1, 2016, from

Developer.chrome.com.

Greg, S. (2014). The trouble with SSL certificate. Retrieved from okturles.org.

Hodges, C. J. (2012, 11). HTTP Strict Transport Security (HSTS). Retrieved from RFC 6797

(Proposed Standard).

Hoffman, C. (2012, 06 1). Browser Plugins – One Of The Biggest Security Problems On The

Web Today. Retrieved 2016, from MakeUseOf: http://www.makeuseof.com/tag/browser-

plugins-one-of-the-biggest-security-problems-on-the-web-today-opinion/

Holz, T. R. (2012). X. 509 forensics: Detecting and localising the SSL/TLS men-in-the-middle.

in Proceedings of the European Symposium on Research in Computer Security.

Huang, E. Y. (2011). Talking to yourself for fun and profit. in Proceedings of the Web 2.0

Security and Privacy.

Jackson, A. B. (2007). Protecting browsers from DNS rebinding attacks. in Proceedings of the

ACM Conference on Computer and Communications Security.

Keromytis, M. A. (2009). Doublecheck: Multi-path verification against man-in-the-middle

attacks. in IEEE Symposium on Computers and Communications.

Kim, L.-S. H. (2013). Accountable Key Infrastructure (AKI): A proposal for a public-key

validation infrastructure. in Proceedings of the International Conference on World Wide

Web.

Kreibich, N. W. (2010). Netalyzr: Illuminating the edge network. in Proceedings of the ACM

SIGCOMM Conference on Internet Measurement,.

Laurie. (2012). Certificate Transparency Internet-Draft draft-laurie-pki-sunlight. IETF.

Laurie, & Langley, E. K. (2012, 20 02). Certificate Transparency. Internet-Draft draft-laurie-

pki-sunlight. IETF.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 56 of 72

Marlinspike, M. (2011). SSL and the future of authenticity. Black Hat Security. USA.

Moxie, M. (2009). New Tricks For Defeating SSL In Practice; BlackHat Security. LAS VEGAS:

blackhat.com.

Moxie, M. (2011, July 25). Retrieved from https://moxie.org/software/sslsniff/

Moxie, M. (2011, 5 15). Retrieved from https://moxie.org/software/sslstrip/

Moxie, M. (2016, November). Retrieved from http://www.thoughtcrime.org/software/sslstrip

Muders, F. B. (2012). Why eve and mallory love Android: an analysis of Android SSL

(in)security. in Proceedings of the ACM Conference on Computer and Communications

Security.

Mutton, P. (2016, 03 17). 95% of HTTPS servers vulnerable to trivial MITM attacks. Retrieved

from netcraft: https://news.netcraft.com/archives/2016/03/17/95-of-https-servers-

vulnerable-to-trivial-mitm-attacks.html

Oppliger, (2009). SSL and Tls: Theory and Practice. Artech House Information Security and

Privacy.

Reis, D. (2008). Detecting in-flight page changes with web tripwires. in Proceedings of the 5th

USENIX Symposium on Networked Systems Design and Implementation.

Rescoria, (2008). RFC 5246 - the transport layer security (TLS) protocol version 1.2,. Retrieved

from RFC 5246: http://tools.ietf.org/html/rfc5246

Schwaber. (2002). Scrum With XP. Web.

Schwaber. (2003). Agile Project Management with Scrum. Microsoft Press.

Sleevi, R. (2016, 10 29). Google to Make Certificate Transparency Mandatory By 2017 .

(threatpost.com, Interviewer)

Slepak, & Greg. (2014, 9 24). The Trouble with Certificate Transparency. Retrieved 121 1,

2016, from Blog.okturtles.com: https://blog.okturtles.com/2014/09/the-trouble-with-

certificate-transparency/

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 57 of 72

Smith, M. (2012, 04 25). New Variant Of Flashback For Mac Attacks Again [Updates].

Retrieved 2016, from MakeUseOf: http://www.makeuseof.com/tag/variant-flashback-

mac-attacks-updates/

Stamm, B. S. (2010). Reining in the web with content. in Proceedings of the 19th International

Conference on World Wide Web.

Sunshine, E. A. (2009). Crying wolf: an empirical study of SSL warning effectiveness. in

Proceedings of the 18th USENIX Security Symposium.

Vasco. (2011, 08). DigiNotar reports security incident. Retrieved from

http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_digi

notar_reports_security_incident.aspx

Wendlandt, D. A. (2008). Perspectives: Improving SSH-style host authentication with multi-path

probing. in Proceedings of the USENIX Annual Technical Conference.

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 58 of 72

APPENDIX.

Codes were generated by use of the PlantUML UML design software.

6.1 UML Code Syntax for StrictSSL Use Case diagram.

@startuml

user --|> (request URL): visit to website

(request URL) --|> app

user -> app

:app: -> (http URL redirection)

(http URL redirection) ---> (connects to HTTP + SSL):enforced urls to connect
to HTTP + SSL

:app: <..> (Detects URL): for HTTP + SSl connections

:app: --> (connects to HTTP + SSL): for supported sites

(request URL) ---> (connects to HTTP + SSL): after redirection by the app

@enduml

6.2 UML code Syntax for Certificate Monitor use case diagram.

@startuml

(active) -> (extension) :listens for user requests

(extension) -> app : redirects user urls for certificate parsing

app <-(host certificate): gets

app -> (host certificate): saves

app->(host certificate): validates

(host certificate) <-down-> (Certificate Bundle): compared

app <-up-->(Certificate Bundle): compares

app -left-->(extension): notifies extension

app -up-> (Certificate Bundle): updates

@enduml

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 59 of 72

6.3 UML code Syntax for Top-Down Testing Methodology Diagram.

@startuml

autonumber

[-> Start_test: do_test

activate Start_test

Start_test -> Start_test: Acceptance_testing

activate Start_test

Start_test -> Start_test: System_testing

activate Start_test

Start_test -> Start_test: Sub-System-Intergration_testing

activate Start_test

Start_test -> Start_test: Module_testing

activate Start_test

Start_test -> Start_test: Unit_testing

activate End_test

Start_test -> End_test : request_for_test_satisfaction

Start_test<-- End_test : satisfaction_meet

deactivate Start_test

[<- Start_test: Done

deactivate End_test

@enduml

6.4 UML code syntax for Certificate Monitor Sequence Diagram.

@startuml

autonumber

[-> CertMonitor : do_monitor

activate CertMonitor

CertMonitor-> hostRecentCertificate: get

activate hostRecentCertificate

hostRecentCertificate -> validateCertificate: validates

activate validateCertificate

activate pasrseHostCertificate

activate keychain

activate certificateBundle

activate certificateBundle

SSL/TLS CERTIFICATE TRACKING IN REVEALING FORGED CERTIFICATES

Page 60 of 72

validateCertificate -> pasrseHostCertificate :compares

validateCertificate -> keychain: validates

validateCertificate -> certificateBundle: online certificate transparency

CertMonitor -> certificateBundle:update

activate End_validation

validateCertificate -> End_validation : request_for_test_satisfaction

validateCertificate<-- End_validation : satisfaction_meet

deactivate validateCertificate

[<- validateCertificate: Done

deactivate End_validation

@enduml

6.5 UML code syntax for StrictSSL Activity Diagram.

@startuml

(*) -->[for pause=false\n for redirection=true\n] "Initialization \nAuto
Enforce\nAuto whitelist\n"

..> "Encrypted connection"

-down..>[cached urls] "Initialization \nAuto Enforce\nAuto whitelist\n"

-left--> "check domain"

if "on Enforced list?" then

 -right-->[true] "Enforce HTTP + SSL"

 -right--> "Encrypted connection"

 --> (*)

else

 -->[false] "Terminate connection"

 if "Whitelisted" then

 -->[true] "allow Connection"

-->(*)

else

->[false] (*)

Endif

@enduml

	Dedication.
	Abstract.
	Acknowledgement
	List of Figures
	List of Tables
	CHAPTER 1
	1.0 Introduction
	1.1 Background Information.
	1.1.1 The SSL Protocol
	1.1.2 The SSL Man-in-the-Middle Attack

	1.2 Problem Statement
	1.3 Objectives of the Study
	1.3.1 Main Objective.
	1.3.2 Specific Objectives

	1.4 Research Questions.
	1.5 Scope of the Project.
	1.6 Justification
	1.7 Assumptions.
	1.8 Tools and Technologies used.

	CHAPTER 2
	2.1 Literature Review
	2.1.1 Web Tripwires
	2.1.2 Content Security Policy.
	2.1.4 HTTP Strict Transport Security (HSTS)
	2.1.5 Certificate validation by Notaries.
	2.1.5 Certificate Transparency.

	CHAPTER 3
	3.1 Scrum Methodology
	3.1.1 Overview.
	3.2 Scrum Artifacts.
	3.2.1 The Product Backlog.
	3.2.2 The Project Burn down Chart.
	3.2.3 The Sprint Backlog.
	3.2.4 The Sprint Burn Down Chart
	3.2.5 Impediment list.
	3.3 Sprint
	3.4 The Sprint Planning Meeting.
	3.5 The Daily Activities.
	3.6 Sprint Review Meeting
	3.7 Sprint Retrospect Meeting
	3.8 Project Startup
	3.9 Project Completion
	CHAPTER 4
	Software Analysis and Requirement
	4.1 Study of the current system.
	4.1.1 The Trouble with HTTP Strict Transport Security (HSTS)
	4.1.2 The Trouble with Certificate Transparency.
	4.1.3 Requirements of the new system.
	4.1.4 Functional System Requirements
	4.1.5 Non-Functional Requirements
	4.1.6 Feasibility Study.
	4.1.7 Functions of the system
	4.1.7.1 Strict SSL use case diagram.
	4.1.7.2 Cert Monitor use case diagram
	4.1.7.3 Cert Monitor Sequence Diagram

	4.1.8 Hardware and Operating system considerations.
	4.1.9 Programming languages, libraries and chrome APIs used

	Software Design
	4.2 Introduction
	4.2.1 Designs considerations during problem solving.
	4.2.2 Rationale for choosing the design models.
	4.2.3 Chrome Browser App Architecture.
	Requirement 1. App Container Model.
	Requirement 2. Programming model
	Requirement 3. App lifecycle
	Requirement 4 Security model.

	4.2.4 Strict SSL Design.
	4.2.5 Certificate Monitor Design.

	Software Implementation.
	4.3 Software Implementation Environment.
	4.3.1 4-Tier Implementation architecture
	Layer 1. The presentation tier or user services layer
	Layer 2. The control tier or control layer.
	Layer 3. The business services layer.
	Layer 4. The data tier or data services layer.

	Software Development Testing.
	4.4 Testing Plan.
	4.4.1 The Testing Process
	4.4.2 Requirement Traceability
	4.4.3 Testing Schedule
	4.4.4 Test Strategy
	4.4.5 Unit Testing
	4.4.6 Integration Testing
	4.4.7 System Testing
	4.4.8 Performance Testing
	4.4.9 Test Cases
	4.4.5.1 Test case for Certificate Monitor
	4.4.5.2 Test case for Certificate Monitor App Debugging
	4.4.5.3 Test Case for Strict SSL Extension

	CHAPTER 5
	Discussion and Conclusion
	5.1 Problems that Strict SSL and Cert Monitor set to solve.
	5.2 How the Strict SLL set to ensure HTTP + SSL connections.
	5.3 How the Certificate Monitor set to ensure the integrity of the of the certificate.

	5.4 Problem Encountered in the system conceptualization towards system actualization.
	5.4.1 General problems encountered.
	5.2.3 Challenges faced during the development of the chrome browser application.
	5.2.4 Challenges faced during Certificate Monitor app extension

	5.2.5 How my application and extension have meet the objectives.
	5.3.1 Recommendations
	5.3.2 Future Implementation.
	5.3.3 Conclusion
	REFERENCES
	APPENDIX.
	6.1 UML Code Syntax for StrictSSL Use Case diagram.
	6.2 UML code Syntax for Certificate Monitor use case diagram.
	6.3 UML code Syntax for Top-Down Testing Methodology Diagram.
	6.4 UML code syntax for Certificate Monitor Sequence Diagram.
	6.5 UML code syntax for StrictSSL Activity Diagram.

